

Fab@Hospital Project Kick off meeting

UniPV Unit Work Plan

CompMech Group

Milano, CNR - IMATI

February 20th 2014

Computational Mechanics & Advanced Materials Group

Main Research Areas

- Constitutive modelling of advanced materials (SMA, biological tissues..)
- Numerical methods (isogeometric analysis, fluid-structure interaction..)
- Biomechanics
 - Aortic valve modeling
 - Vascular biomechanics
- Medical image processing
 - Image segmentation from CT/MRI

Great attention to the vascular field

Outline

Planned Activities	<u>WP</u>	Deliverables
 Medical image analysis and patient specific 3D virtual model development Mould CAD design 	WP2	October 2014 (M10)
• Correlation between silicone mixture and mechanical properties of the artery	WP3	November 2014 (M11)
• Demonstrator	WP4	December 2014 (M12)

WP2 - Image analysis and CAD design

From medical images...

..to the 3D virtual model

<u>CAD design for RIGID</u> <u>rapid prototyping</u>

- Add proper connections
- Prototype with 3D printer

Mould CAD design for COMPLIANT rapid prototyping

- Create the negative geometry
- Prototype with 3D printer
- Silicone casting

WP2 - Image analysis and CAD design

Materials

- Image analysis and 3D reconstruction ITK-Snap (open source)
- CAD Design SolidWorks (3DSystem)

Software for CAD design on .stl files (TO BUY)

• 3D Printer - Objet 30Pro (Objet-Stratasys)

In vitro simulation - Hydraulic circuit @ Beta-Lab

WP2 - Image analysis and CAD design

Methods

Mould CAD Design

- From idealized to patient specific mould design
- Identify a correct cut plane to open the mould using the vessel centerline [FUTURE THESIS WORK]

WP3 – Silicon Models

<u>Goal</u>

Endow the compliant model of patient specific fisiopathologic mechanical properties, through a tabel of corresponding silicone mixtures

Materials

- Silicone Sylgard 184 (Dow Corning), base + curing agent, low temperature curing
- **3D Printer** Objet 30 Pro with Durus-White (high-temperature printing material)
- Testing Machine MTS Insight® 10 Electromechanic System

Methods

- Identify different ratio of base and curing agent (starting from 10:1)
- Bone shape specimen of different silicone mixtures
- Mechanical traction test to identify elastic modulus of the different mixtures [FUTURE THESIS WORK]

<u>Goal</u>

Test the effectiveness of the developed productive methodologies

Methods

- Real scenario clinical cases coming from:
 - Vascular Surgery II Unit of IRCCS Policlinico San Donato (San Donato Milanese, Milan)
 - General Surgery II Unit of IRCCS Policlinico San Matteo (Pavia)
- Cost and time estimation

Skills and Facilities

<u>3D Printing @ ProtoLab</u>

Objet 30 Pro - 7 different printing materials at high resolution (up to 16 μ m)

Web:

http://www.unipv.it/compmech/proto-lab.html

Medical prototyping

From image analysis to 3D printing

To test devices on patient specific geometries

Thanks for your attention